
Standard Form 298 (Rev 8/98) 
Prescribed by ANSI  Std. Z39.18

225-578-5628

W911NF-10-1-0004

56889-CS-DPS.19

Final Report

a. REPORT

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

15.  SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17.  LIMITATION OF 
ABSTRACT

15.  NUMBER 
OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

10-04-2015 15-Oct-2009 14-Oct-2013

Approved for Public Release; Distribution Unlimited

Final Report: Compiler-Driven Performance Optimization and 
Tuning for Multicore Architectures

The widespread emergence of multicore processors as the computing engine in all commodity platforms
presents our field with an enormous software development crisis. For over two decades, sequential software
applications have enjoyed the free-ride of performance improvement with each new processor generation.
The reality today is that existing and new applications must be changed to make them multi-threaded if they
are to experience any performance benefits from newer generations of processors. An attractive approach
to addressing some aspects of this monumental software development challenge is to develop highly optimized

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

multicore; compiler optimizations; tiling; GPUs

REPORT DOCUMENTATION PAGE

11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)
    ARO

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER
Jagannathan Ramanujam

Jagannathan Ramanujam

106011

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection 
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Louisiana State University and A&M College
Office of Sponsored Programs
Louisiana State University and A&M College
Baton Rouge, LA 70803 -0001



14-Oct-2013



ABSTRACT

Final Report: Compiler-Driven Performance Optimization and Tuning for Multicore Architectures

Report Title

The widespread emergence of multicore processors as the computing engine in all commodity platforms
presents our field with an enormous software development crisis. For over two decades, sequential software
applications have enjoyed the free-ride of performance improvement with each new processor generation.
The reality today is that existing and new applications must be changed to make them multi-threaded if they
are to experience any performance benefits from newer generations of processors. An attractive approach
to addressing some aspects of this monumental software development challenge is to develop highly optimized
version of compute-intensive portions of an application. This project aims to develop a powerful
system for auto-tuning of library routines and compute-intensive kernels, driven by the Pluto system for
multicores that we are developing. The work here is motivated by recent advances in two major areas of
performance optimization: (i) auto-tuning approaches that employ a combination of static and dynamic exploration
of the optimization space, and (ii) polyhedral-based approaches for powerful transformations of
affine computations.
Our work builds on some very recent developments using polyhedral models showing great promise
for developing effective automatic parallelization frameworks for multicore architectures. With the polyhedral
model, it is possible to reason about the correctness of complex loop transformations in a completely
mathematical setting using powerful machinery from linear algebra and linear programming. This enables
effective integrated transformation, and therefore can be the basis for developing a very powerful automatic
parallelization framework that can target different multicore platforms. The project addresses a number of
key issues that are very important in developing an automatic parallelization and data locality optimization
framework that is effective over a range of user application codes: model-driven search for determination
of effective tile sizes and loop fusion choices; exploration of dynamic scheduling of tiles; extended tiling
approaches like overlapped/split tiles to enhance concurrency; automatic generation of parallel code for
accelerators with multiple distinct address spaces; and development of an extensive benchmark suite for
assessment of automatic parallelization systems. This novel optimization framework has potential for high
payoffs in generating high-performance code.
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Compiler-Driven Performance Optimization and Tuning for Multicore
Architectures

PI: J. Ramanujam (Louisiana State University)
Proposal Number: 56889-CS-DPS, Agreement Number: W911NF-10-1-0004

Final Report – Scientific Progress and Accomplishments:
October 15, 2009–October 14, 2013

This portion the report briefly describes the major aspects of scientific progress and accomplishments during this
project spanning four years.

The widespread emergence of multicore processors as the computing engine in all commodity platforms presents
our field with an enormous software development crisis. For over two decades, sequential software applications have
enjoyed the free-ride of performance improvement with each new processor generation. The reality today is that ex-
isting and new applications must be changed to make them multi-threaded if they are to experience any performance
benefits from newer generations of processors. An attractive approach to addressing some aspects of this monumental
software development challenge is to develop highly optimized version of compute-intensive portions of an applica-
tion. This project aims to develop a powerful system for auto-tuning of library routines and compute-intensive kernels,
driven by the Pluto system for multicores that we are developing. The work here is motivated by recent advances in
two major areas of performance optimization: (i) auto-tuning approaches that employ a combination of static and
dynamic exploration of the optimization space, and (ii) polyhedral-based approaches for powerful transformations of
affine computations.

Our work builds on some very recent developments using polyhedral models showing great promise for developing
effective automatic parallelization frameworks for multicore architectures. With the polyhedral model, it is possible
to reason about the correctness of complex loop transformations in a completely mathematical setting using powerful
machinery from linear algebra and linear programming. This enables effective integrated transformation, and therefore
can be the basis for developing a very powerful automatic parallelization framework that can target different multicore
platforms. The project addresses a number of key issues that are very important in developing an automatic paralleliza-
tion and data locality optimization framework that is effective over a range of user application codes: model-driven
search for determination of effective tile sizes and loop fusion choices; exploration of dynamic scheduling of tiles; ex-
tended tiling approaches like overlapped/split tiles to enhance concurrency; automatic generation of parallel code for
accelerators with multiple distinct address spaces; and development of an extensive benchmark suite for assessment
of automatic parallelization systems. This novel optimization framework has potential for high payoffs in generating
high-performance code.
Next, this report describes the activities that we engaged in during this project.

1. Performance Optimizations for Multicore GPUs
Graphics Processing Units (GPUs) offer tremendous computational power. CUDA (Compute Unified Device Ar-
chitecture) provides a multi-threaded parallel programming model, facilitating high performance implementations
of general-purpose computations. However, the explicitly managed memory hierarchy and multi-level parallel view
make manual development of high-performance CUDA code rather complicated. Hence the automatic transformation
of sequential input programs into efficient parallel CUDA programs is of considerable interest.

Recently, we [BRS 10] have developed an end-to-end automatic C-to-CUDA code generator using a polyhedral
compiler transformation framework. We have used and adapted PLUTO (our state-of-the-art tool for polyhedral com-
pilation) and other publicly available tools that have made polyhedral compiler optimization practically effective. The
result is a C-to-CUDA transformation system that generates two-level parallel CUDA code that is optimized for effi-
cient data access. We evaluated the quality of the generated code using several benchmarks, by comparing the perfor-
mance of automatically generated CUDA code with hand-tuned CUDA code where available and also with optimized
code generated by the Intel ICC compiler for a general-purpose multicore CPU. Experimental results demonstrated
the performance improvements achieved using the framework.
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2. Compiler-Assisted Dynamic Scheduling for Effective Parallelization of Tiled Loop Nests
For multi-statement input programs with statements of different dimensionalities, such as Cholesky or LU decomposi-
tion, the parallel tiled code generated by PLUTO may suffer from significant load imbalance as well excessive barrier
synchronization overheads, resulting in poor scalability on multi-core systems. Recently, we have developed a com-
pletely automatic parallelization approach for transforming input affine sequential codes into efficient parallel codes
that can be executed on a multi-core system in a load-balanced manner. In our approach, we employ a compile-time
technique that enables dynamic extraction of inter-tile dependences at run-time, and dynamic scheduling of the parallel
tiles on the processor cores for improved scalable execution. Our approach obviates the need for programmer inter-
vention and re-writing of existing algorithms for efficient parallel execution on multi-cores. We have demonstrated the
usefulness of our approach through comparisons using linear algebra computations: LU and Cholesky decomposition.
In addition, we have used this dynamic scheduling approach with DynTile, a parallel parametric tiling strategy that we
have developed.

3. Model-driven Optimization
Tiling is a critical transformation for performance optimization, and a number of recent efforts have focused on ad-
vanced techniques for generating parametrically tiled code. However, the problem of selecting effective tile sizes
remains challenging. The current state of practice, as exemplified by systems such as ATLAS, is expensive empirical
search. Several previous studies have also proposed analytical models, but none have been shown to be practically
effective in selecting the best tile sizes.

Recently, in collaboration with Vivek Sarkar (one of the co-PIs on the DARPA-funded PACE project) and Jun
Shirako from Rice University and P. Sadayappan from Ohio State, we are in th eprocess of developing a novel approach
to model-driven empirical search for tile size selection. Two analytical models have been used, one a conservative
model based on the cache footprint of a tile that does not account for reuse, and the other, an aggressive model
that assumes maximal intra-tile reuse. Empirical search is carried out in the search space bounded between regions
delineated by the two models. Experimental results on multiple platforms have demonstrated the practical effectiveness
of the new approach to model-driven empirical search for tile sizes.

4. Combined Iterative and Model-Driven Optimization
The multi-core era places significant demands on an optimizing compiler, which must parallelize programs, exploit
memory hierarchy, and leverage the ever-increasing SIMD capabilities of modern processors. Existing model-based
heuristics for performance optimization used in compilers are limited in their ability to identify profitable paral-
lelism/locality trade-offs and usually lead to sub-optimal performance. To address this problem, in [PB+ 10], we
have developed a completely automatic framework in which we focus the empirical search on the set of valid possi-
bilities to perform fusion/code motion, and rely on model-based mechanisms to perform tiling, vectorization and par-
allelization on the transformed program. This paper addressed the problem of optimizing and parallelizing programs
automatically, focusing on static control loop nests. Our approach departs from the traditional best-effort compiler
optimizations, aiming for performance portability across a variety of shared-memory multiprocessors. We proposed
a combined iterative and model-driven approach, leveraging a state-of-the-art parallelization method based on loop
tiling, and combining it with a novel feedback-directed scheme for loop fusion and distribution.

Our technique builds an expressive search space of loop transformation sequences, expressed in the polyhedral
model as a set of affine scheduling functions. The search space encompasses complex compositions of loop trans-
formations, including loop fusion and distribution, loop tiling for parallelism and locality (caches, registers), loop
interchange, and loop shifting (pipelining). We proposed a convex encoding of all legal transformed program versions
as the space to search.

We demonstrated the effectiveness of this approach in terms of strong performance improvements on a single target
as well as performance portability across different target architectures. We performed experiments on three different
platforms: a 24-core Xeon, a 16-core Opteron, and a single-core low-power Atom processor. Our experiments confirm
that no single program version performs equally well on different targets, with penalties reaching 2× when running the
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best version for a given target on a different target. We also consistently demonstrate strong performance improvements
over the state-of-the-art model-based compilers, with performance improvement factors up to 8× over Intel’s compiler.

5. Characterization of Affine Transformations
High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit resources
in modern processor architectures. However, determining appropriate compositions of loop transformations to achieve
this remains a significantly challenging task; current compilers may achieve significantly lower performance than
hand-optimized programs.

Despite four decades of research and development in compiler optimizations, it remains a challenging task for
compiler designers and a frustrating experience for programmers — the performance gap, between expert-written
code for a given machine and that optimized and parallelized automatically by a compiler, is widening with newer
generations of hardware. One reason for this widening gap is due to the way loop nest optimizers attempt to decompose
the global optimization problem into simpler sub-problems. The polyhedral compiler framework provides a convenient
and powerful abstraction to apply composite transformations in one step. However, the space of affine transformations
is extremely large. Linear optimization in such a high-dimensional space raises complexity issues and its effectiveness
is limited by the lack of accurate profitability models.

In [PB+ 11], we made the following contributions:

• We provided a complete, convex formalization for affine transformations. This convex set of semantics-preserving,
distinct, affine multidimensional schedules opens the door to more powerful linear optimization algorithms.

• We proposed a decomposition of the general optimization problem over this convex polyhedron into sub-
problems of much lower complexity, introducing the powerful fusibility concept. The fusibility relation gener-
alizes the legality conditions for loop fusion, abstracting a large set of multidimensional, affine, fusion-enabling
transformations.

• We demonstrated that exploring fusibility opportunities in a loop nest reduces to the enumeration of total pre-
orders, and to the existence of pairwise compatible loop permutations. We also studied the transitivity of the
fusibility relation.

• Based on these results, we designed a multidimensional affine scheduling algorithm targeted at achieving
portable high performance across modern processor architectures.

Our approach has been fully implemented in a source-to-source compiler and validated on representative benchmarks.

6. Data Layout Transformations for Stencil Computations on Short-vector SIMD Architec-
tures
Short vector SIMD extensions are included in all major high-performance CPUs. While ubiquitous, the ISA and
performance characteristics vary from vendor to vendor and across hardware generations. For instance, Intel has in-
troduced SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, and LRBni ISA extensions over the years. With every
processor, the latency and throughput numbers of instructions in these extensions change. IBM, Freescale, and Mo-
torola have introduced AltiVec, VMX, VMX128, VSX, Cell SPU, PowerXCell 8i SPU SIMD implementations. In
some instances (RoadRunner, BlueGene/L), custom ISA extensions were designed since the supercomputing installa-
tion was big enough to warrant such an investment. These extensions provide from 2-way adds and multiplies up to
16-way fused multiply-add operations, promising significant speed-up. It is therefore important to optimize for these
extensions.

Stencil computations represent an important class, occuring in many image processing applications, computational
electromagnetics and solution of PDEs using finite difference or finite volume discretizations. There has been consid-
erable recent interest in optimization of stencil computations. In [HS+ 11], we focus on the problem of optimizing
single-core performance on modern processors with SIMD instruction sets. Stencil computations are readily express-
ible in a form with vectorizable innermost loops where arrays are accessed at unit stride. However, as elaborated upon
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later, there is a fundamental performance limiting factor with all current short-vector SIMD instruction sets such as
SSE, AVX, VMX, etc. We formalize the problem through the abstraction of stream alignment conflicts. We note
that the alignment conflict issue we formulate and solve in this paper pertains to algorithmic alignment constraints
and is distinctly different from the previously studied topic of efficient code generation on SIMD architectures with
hardware alignment constraints. We address the problem of resolving stream alignment conflict through the novel use
of a nonlinear data layout transformation and develop a compiler framework to identify and suitably transform the
computations. Experimental results on multiple targets demonstrate the effectiveness of the approach on a number of
stencil kernels.

7. Parametric Tiling
Tiling is a crucial loop transformation for generating high performance code on modern architectures. Efficient gen-
eration of multi-level tiled code is essential for maximizing data reuse in systems with deep memory hierarchies. A
number of works on tiling generate tiled code where the tile sizes are fixed. Since the performance of tiled code
varies greatly with the choice of tile sizes, it is preferable to specify the tile sizes as runtime parameters in the code.
In such cases, parametric tiling refers to the generation of tiled code where tile loops are runtime parameters. For
example, such an approach would enable empirical search for tile sizes. The importance of parametric tiling is ex-
emplified by the highly successful ATLAS system for empirical tuning of BLAS kernels. But the ATLAS system can
only tune BLAS kernels. Further, it was manually engineered by experts with insights into tiling for optimization of
BLAS kernels. There has been much recent interest in developing generalized tuning systems that can similarly tune
and optimize codes input by users or library developers. An efficient parametric tiling tool is extremely valuable for
generating input tiled codes for such empirical tuning systems.

Tiled loops with parametric tile sizes (not compile-time constants) facilitate runtime feedback and dynamic opti-
mizations used in iterative compilation and automatic tuning. Previous parametric multi-level tiling approaches have
been restricted to perfectly nested loops, where all assignment statements are contained inside the innermost loop of a
loop nest. Previous solutions to tiling for imperfect loop nests have only handled fixed tile sizes. Last year, we [HB+
09] presented an approach to parametric multi-level tiling of imperfectly nested loops. The tiling technique generates
loops that iterate over full rectangular tiles, making them amenable to compiler optimizations such as register tiling.

The solution presented in [HB+ 09] (called PrimeTile) works for sequential tiling. We have developed two parallel
parametric tiling techniques that handle imperfectly nested loops: a dynamic solution [HB+ 10] (called DynTile)
and a compile-time solution (called PTile) that also included the development of a relaxed symbolic Fourier-Motzkin
elimination technique [BH+ 10].

In [TH+ 10], we present a comparative study of three recently developed approaches for parametric tiling of affine
loop nests:

• PrimeTile [HB+ 09]: This was the first system to generate parametrically tiled code for affine imperfectly
nested loops. As explained in the next section, it uses a level by level approach to generate tiled code, with a
prolog, epilog, and a full-tiles loop nest corresponding to each nesting level of the original code. The approach
was limited to sequential output tiled code.

• DynTile [HB+10] : This was the first implementation of an approach for parallel execution of parametrically
tiled affine code. It utilizes wavefront parallelism in the tiled iteration space corresponding to the convex hull of
all the statement domains of the input untiled code. Wavefront parallelism in the tiled iteration space is exploited
through use of an inspector/executor approach. A statically generated inspector code scans the tiles and places
them in bins corresponding to the different wavefronts. Dynamic scheduling of the tiles is then performed in
order of increasing wavefronts.

• PTile [BH+ 10]: This was the first approach to compile-time generation of code for wavefront-parallel tiled
execution. Instead of the dynamic runtime scanning and binning of tiles as done by the DynTile approaches,
transformed code for wavefront parallel tiled execution is automatically generated.

We observed that for sequential execution, PrimeTile performs best in our experiments, with a performance often
comparable with DynTile, in particular when considering ICC. We also observe that GCC has more trouble in optimiz-
ing the code generated by DynTile than the one generated by PrimeTile. The slowdown of PTile is explained by the
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order in which tiles are executed: PTile generates a wavefront outer-most tile loop, that is needed to ensure correctness
of parallel tile execution. However, for sequential execution, this wavefront order is detrimental to locality, and thus
to performance.

Also, we observed that DynTile slightly outperforms PTile for parallel execution. The explanation lies in the
amount of parallelism that is exploited by the two approaches. For DynTile, all tiles that can be executed in parallel
for a given wavefront are indeed marked as parallel, with a #pragma omp for around the loop which iterates over all
tiles belonging to the wavefront. However, for PTile, only the next outer-most loop is marked as parallel, the outer-
most loop being the wavefront loop. So even though the remaining tile loops are also parallel, this parallelism is not
exploited. It is expected that coalescing the parallel tile loops into a single loop would improve load balancing, and
exploit all the available parallelism.

In addition, we observed that for all considered benchmarks, neither ICC nor GCC was able to vectorize loops in
the computational kernel. For most cases, the compiler was unable to analyze the loops because of complex controls
and/or access patterns. The increased complexity of controls generated by polyhedral parametric tiling challenges
the compiler’s loop analyzer, and it has been shown that for such cases it is beneficial to expose and explicitly mark
vectorizable loops from within the polyhedral transformation framework using such as Pluto.

8. Adaptive Parametric Tiling
Tiling is a crucial loop transformation for generating high performance code on modern architectures. Efficient gen-
eration of multi-level tiled code is essential for maximizing data reuse in systems with deep memory hierarchies. A
number of works on tiling generate tiled code where the tile sizes are fixed. Since the performance of tiled code
varies greatly with the choice of tile sizes, it is preferable to specify the tile sizes as runtime parameters in the code.
In such cases, parametric tiling refers to the generation of tiled code where tile loops are runtime parameters. For
example, such an approach would enable empirical search for tile sizes. The importance of parametric tiling is ex-
emplified by the highly successful ATLAS system for empirical tuning of BLAS kernels. But the ATLAS system can
only tune BLAS kernels. Further, it was manually engineered by experts with insights into tiling for optimization of
BLAS kernels. There has been much recent interest in developing generalized tuning systems that can similarly tune
and optimize codes input by users or library developers. An efficient parametric tiling tool is extremely valuable for
generating input tiled codes for such empirical tuning systems.

Tiled loops with parametric tile sizes (not compile-time constants) facilitate runtime feedback and dynamic opti-
mizations used in iterative compilation and automatic tuning. Previous parametric multi-level tiling approaches have
been restricted to perfectly nested loops, where all assignment statements are contained inside the innermost loop of a
loop nest. Previous solutions to tiling for imperfect loop nests have only handled fixed tile sizes. Earlier in this project,
we [HB+ 09] presented an approach to sequential parametric multi-level tiling of imperfectly nested loops. The tiling
technique generates loops that iterate over full rectangular tiles, making them amenable to compiler optimizations
such as register tiling. Later, we developed two parallel parametric tiling techniques that handle imperfectly nested
loops: a dynamic solution [HB+ 10] (called DynTile) and a compile-time solution (called PTile) that also included the
development of a relaxed symbolic Fourier-Motzkin elimination technique. In [TH+ 10], we presented a comparative
study of three recently developed approaches for parametric tiling of affine loop nests.

Advances in parameterized tiling, where tile sizes are symbolic parameters have enabled the generation of code
that can be executed with different tile sizes in different environments. There has also been much interest in developing
analytical models to determine optimal tile sizes as a function of architectural parameters (sizes and associativities of
caches and TLBs, etc.) and code characteristics. However, so far no analytical model has been shown to be effective in
finding optimal tile sizes across a wide range of programs and target platforms. Therefore, the current state-of-practice
for effective tile size selection is to use auto-tuning, where an empirical search for the best tile sizes (often off-line) is
carried out by running the program with different tile sizes, and the best performing configuration observed is retained.
While ATLAS is perhaps the most widely known auto-tuning framework, many other systems have demonstrated the
effective use of auto-tuning for selection of tile sizes and other optimization parameters such as the degree of loop
unrolling.

Although auto-tuning is effective for tile size optimization, it requires execution of a large number of tuning runs on
the target platform prior to the actual “production” run of an application, and thus is more suited for the development
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of library packages, rather than for user code. Further, auto-tuning may not be feasible in contexts such as cloud
computing, where users run their applications in a cost-effective manner in the “cloud,” but the characteristics of the
machine(s) on which the program is executed may not be known to the user beforehand. Depending on the number
of other applications running on the same machine (a factor that is often beyond the control of application users),
every run of the application may require different tile sizes for best performance. Furthermore, different runs of an
application could be on different platforms. Autotuning based on empirical search of the space of possible tile sizes is
thus infeasible in this context.

Tiling is an important program transformation that is often used to enhance cache locality and to obtain coarse-
grained parallelism. Recently [TP+ 11], [TR+ 13], we have developed a novel approach for the generation of tiled
code, so that different tile sizes are dynamically tried out as the actual “production” code (that is parametrically tiled)
executes, and an effective set of tile sizes is determined on the fly. In other words, there is no need to rely on a
priori empirical search and auto-tuning. Instead, the program observes and adapts its own run-time behavior, as a
function of the (unknown) machine characteristics and system load. We developed a new code generation techniques
to enable on-the-fly variation of the tile sizes during program execution. The developed approach can handle affine
multi-statement imperfectly nested loop nests. In addition, we presented an algorithm for dynamic adaptation of tile
sizes. Our approach works by moving towards better tile sizes by monitoring the performance of a few iterations of
the loop. We found that a run-time adaptation of tile sizes is able to achieve near-optimal performance for a number
of benchmarks.

9. Layout Optimization and Library Call Selection in Code Generation
The Tensor Contraction Engine (TCE) is a compiler that translates high-level, mathematical tensor contraction expres-
sions into efficient, parallel Fortran code. A tensor contraction can be viewed as a sum of product of multi-dimensional
arrays (often three to six dimensional arrays). A pair of optimizations in the TCE, the fusion and tiling optimizations,
have proven successful for minimizing disk-to-memory traffic for dense tensor computations. These take advantage
of the semantics of the tensor contraction expressions. Measurements of the code generated by TCE showed that in
addition to optimizing tile sizes of the fused loop structure, it is necessary to optimize the layout and to select appro-
priate library calls for computing the inner-most loop nests. These library calls can be used to replace the generated
code for the contraction. Unfortunately, existing linear algebra libraries implement optimized code for operations on
two-dimensonal arrays (i.e., matrices).

A tensor contraction can be implemented by index permutations of its arguments to view each tensor as a two-
dimensional matrix followed by a DGEMM matrix multiplication library call. There are typically several possible
combinations of index permutations and DGEMM calls with different costs. We [LG+ 12] have previously developed
a layout optimization algorithm. We measured the performance of the code structures resulting from our layout
optimization algorithm on a variety of architectures.

10. Analytical Bounds to Improve Tile Size Selection
Modern computer systems utilize multi-level memory hierarchies in which the latency of data access from higher levels
are orders of magnitude higher than the time required to perform arithmetic operations. Loop Tiling is a classical
technique to enhance data reuse in memory hierarchy levels close to the processor. Recent advances have made it
possible to automatically generate parametrically tiled code, even for imperfectly nested loops. It is well known that
the choice of tile sizes has a significant effect on performance, but the effective selection of optimized tile sizes remains
an open problem that has become ever more challenging as processor memory hierarchies increase in complexity and
depth.

Past work has pursued two main types of approaches for tile size selection, analytical and empirical. In analytical
approaches, a compiler selects tile sizes based on static analysis of loop nests and known characteristics of the memory
hierarchy. Although several analytical techniques for tile size selection have been proposed in the literature, none has
been demonstrated to be sufficiently effective for use in practice. As a result, the gap between the performance
delivered by the best known tile sizes and those selected by an analytical approach has continued to widen, thereby
diminishing the utility of past analytical approaches.
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Empirical approaches to tile size optimization treat the loop nest as a black box, and perform empirical auto-tuning
for a given architecture by actually executing the tiled code for a range of different tile sizes. The highly successful
ATLAS (Automatically Tuned Linear Algebra Software) system uses empirical tuning at library installation time
to find the best tile sizes for different problem sizes on the target machine. One of the most challenging issues in
empirical approaches for tile size selection is the enormous search space that must be explored when tiling multiple
loops. Though many empirical tuning systems attempt to reduce the search space by only examining square tiles, our
results in [SS+ 12] reaffirm the importance of including non-square tiles in the search space.

In [SS+ 12], we introduce a novel approach using analytical bounds to limit the search space with empirical tuning
for square and non-square tiling. The approach developed in [SS+ 12] to pruning the search space is complementary
to, and can be combined with, existing empirical search strategies; e.g., the analytical bounds can be integrated with
existing auto-tuning frameworks such as ATLAS. Experimental results show that our approach can reduce the search
space by up to four orders of magnitude.

Our approach employs a pair of analytical models to prune the search space: a conservative model that under-
estimates the number of iterations in an optimal tile (DL), and an optimistic model that overestimates the number
of iterations in an optimal tile (ML). DL (Distinct Lines), a conservative model from past work, models the required
cache capacity for a tile as its total data footprint. Under this model, any tiles with a data footprint larger than the cache
size are discarded, since they may incur capacity misses during execution. However, this is a pessimistic assumption
for many applications, especially applications with streaming data accesses. We therefore introduced an optimistic an-
alytical model, ML (Minimum working set Lines), that assumes an ideal intra-tile cache block replacement. Because
DL and ML respectively provide lower and upper bounds for tile sizes, we can use them to bound tile size search space
for empirical tuning. Our experiments show that this bounded search space still contains optimal tile sizes, despite
reductions of up to four orders of magnitude in the size of the search space.

11. Domain-Specific Compilation of Stencil Codes
Stencils represent an important computational pattern used in scientific applications in a variety of domains including
computational electromagnetics, solution of PDEs using finite difference or finite volume discretizations, and image
processing for CT and MRI imaging. There is increasing interest in developing domain-specific frameworks for high-
performance scientific computing due to the diversity of current/emerging parallel architectures. Using the Stencil
Domain Specific Language (SDSL) we recently proposed, our recent work [HV+ 13] describes a set of compiler
transformations that are needed to generate efficient code for (i) GPUs such as NVIDIA GTX580 and AMD A8-3850,
and (ii) multicore processors with short-vector SIMD ISAs such as SSE, AVX, VSX, LRBNi etc., for stencil compu-
tations. Vector operations, with ISAs like SSE or AVX, require the loading of physically contiguous data elements
from memory into vector registers and the execution of identical and independent operations on the components of
vector registers. As stencil computations involve arithmetic operations on physically contiguous data elements, e.g.,
c0*(A[i-1]+A[i]+A[i+1]), they pose challenges to efficient implementation on these architectures. It requires the use
of redundant and unaligned loads of data elements from memory into different slots. We had previously addressed this
issue through a dimension-lifting-transpose (DLT) data layout transformation. However, only sequential, L1-resident
execution was addressed. In [HV+ 13], we describe an integrated approach to perform tiling in conjunction with
DLT transformation to generate efficient parallel code for stencil computations over large data sets on shared memory
multiprocessors. We compare performance with code generated by the Pochoir stencil compiler and Pluto for sev-
eral benchmarks on multiple target multicore processors, demonstrating strong performance benefits for 1D and 2D
stencils.

12. Split-tiling for GPUs
Tiling is a key technique to enhance data reuse. For computations structured as one sequential outer time loop enclosing
a set of parallel inner loops, tiling only the parallel inner loops may not enable enough data reuse in the cache. Tiling
the inner loops along with the outer time loop enhances data locality but may require other transformations like loop
skewing that inhibit inter-tile parallelism. One approach to tiling that enhances data locality without inhibiting inter-
tile parallelism is split tiling, where tiles are subdivided into a sequence of trapezoidal computation steps. In [CG+ 13],
we developed an approach to generate split tiled code for GPUs in the PPCG polyhedral code generator. We proposed
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a generic algorithm to calculate index-set splitting that enables us to perform tiling for locality and synchronization
avoidance, while simultaneously maintaining parallelism, without the need for skewing or redundant computations.
Our algorithm performs split tiling for an arbitrary number of dimensions and without the need to construct any large
integer linear program. The method and its implementation are evaluated on standard stencil kernels and compared
with a state-of-the-art polyhedral compiler and with a domain-specific stencil compiler, both targeting CUDA GPUs.
The newly developed algorithm is being incorporated into the publicly available PPCG tool flow.

13. Automatic Parallelization of Irregular Computations for Distributed Memory Systems
Parallelization and locality optimization of affine loop nests has been successfully addressed for shared-memory
multiprocessors and GPUs. However, most large-scale simulation applications must be executed in a distributed-
memory environment, and often use irregular/sparse computations where the control-flow and array-access patterns
are data-dependent. In [RE+ 12], we developed compiler support for effective parallelization of such applications
for a distributed-memory environment, using a combination of static and run-time analysis. We discussed algorithms
to generate executor code to execute the original computation on multiple processes, along with inspector code that
analyzes the data-dependent control-flow and arrayaccess patterns at run time and in parallel. The effectiveness of the
framework was demonstrated on several benchmarks and a production climate modeling application.

14. Storage Optimization for Embedded Processors
Most modern digital signal processors (DSPs) provide multiple address registers and a dedicated address generation
unit (AGU) which performs address generation in parallel to instruction execution. There is no address computation
overhead if the next address is within the auto-modify range. A careful placement of variables in memory (called
“offset assignment” or OA) is utilized to decrease the number of address arithmetic instructions and thus to generate
compact and efficient code. The simple offset assignment (SOA) problem concerns the layout of variables for machines
with one address register and the general offset assignment (GOA) deals with multiple address registers. Both these
problems assume that each variable needs to be allocated for the entire duration of a program. Both SOA and GOA
are NP-complete.

In [SR 11], we present effective heuristics for the simple and the general offset assignment problem with variable
coalescing. Coalescing allows two or more variables to share the same memory location provided that their live ranges
do not overlap. Based on the live ranges of all the variables, an interference graph is constructed where an edge
(u,v) in the graph indicates that variables u and v interfere and thus they cannot be mapped into the same memory
location. Variable coalescing, in which two or more non-interfering variables are mapped into the same memory
location, improves the results by decreasing the number of address arithmetic instructions needed as well as the
memory requirement for storing the variables. Results on several benchmarks show the significant improvement of
our proposed heuristics compared to other heuristics in the literature.

In [WR 10], we consider the problem of SOA based on specialized DSPs with Address Generation Units (AGUs).
A number of SOA algorithms had been proposed to solve the SOA problem in the past years. In this paper, a new
heuristic has been proposed for SOA which dynamically selects the edge by re-sorting the edge array iteratively. A
new technique for edge selection approach has been proposed to reduce the OA cost in advance. Experimental results
on several benchmarks shows that our approach is not only better than the previous works but also can be applied onto
the other OA algorithms to have a significant improvement.

In [SRa 12], we develop an integer linear programming solution for the address code generation problem for
embedded processors, in particular for Digital Signal Processors (DSPs). In [SRb 12], we develop an approach for
code size reduction for array-intensive applications on DSPs that reduces the size of the address code.

15. Task Scheduling and Memory Partitioning for Multi-Processor System-on-Chip
The growing trend in current complex embedded systems is to deploy multiprocessor system-on-chip (MPSoC). An
MPSoC consists of multiple heterogeneous processing elements, a memory hierarchy, and input/output components
which are linked together by an on-chip interconnect structure. Such architecture provides the flexibility to meet
the performance requirements of multimedia applications while respecting the constraints on memory, cost, size,
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time, and power. Many embedded systems employ software-managed memories known as scratch-pad memories
(SPM). Scratchpad memories, unlike caches, are software-controlled and hence the execution time of applications on
such systems can be accurately predicted and controlled. Scheduling the tasks of an embedded application on the
processors as well as partitioning the available SPM budget among these processors are two critical issues in reducing
the overall computation time as well as the communication overhead. Traditionally, the step of task scheduling is
applied separately from the memory partitioning step. Such a decoupled approach may miss better quality schedules.
In [SRc 12], we present an integrated approach to task scheduling and SPM partitioning to further reduce the execution
time of embedded applications. Results on several real life benchmarks show the significant improvement of our
technique compared to decoupled techniques as well as to an integer-linear programming approach.
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